Kaggle Titanic Competition Part X – ROC Curves and AUC
In the last post, we looked at how to generate and interpret learning curves to validate how well our model is performing. Today we'll take a look at another popular diagnostic used to figure out how well our model is performing. The Receiver Operating Characteristic (ROC curve) is a chart that illustrates how the true positive rate and false positive rate of a binary classifier vary as the discrimination threshold changes. Did that make any sense? Probably not, hopefully it will by the time we're finished. An important thing to keep in mind is that ROC is all about [...]